满分5 > 高中数学试题 >

在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+...

在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=( )
A.33
B.72
C.84
D.189
根据等比数列{an}中,首项a1=3,前三项和为21,可求得q,根据等比数列的通项公式,分别求得a3,a4和a5代入a3+a4+a5,即可得到答案. 【解析】 在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21 故3+3q+3q2=21, ∴q=2 ∴a3+a4+a5=21×22=84 故选C
复制答案
考点分析:
相关试题推荐
命题“对任意的x∈R,x3-x2+1≤0”的否定是( )
A.不存在x∈R,x3-x2+1≤0
B.存在x∈R,x3-x2+1≤0
C.存在x∈R,x3-x2+1>0
D.对任意的x∈R,x3-x2+1>0
查看答案
若A={1,4,x},B={1,x2},且A∩B=B,则x=( )
A.2
B.±2
C.2、-2或0
D.2、-2、0或1
查看答案
已知曲线manfen5.com 满分网的一条切线的斜率为manfen5.com 满分网,则切点的横坐标为( )
A.1
B.2
C.3
D.4
查看答案
已知二次函数f(x)=ax2+bx+c.
(1)若对任意x1,x2∈R,且x1<x2,都有f(x1)≠f(x2),求证:关于x的方程manfen5.com 满分网有两个不相等的实数根且必有一个根属于(x1,x2);
(2)若关于x的方程manfen5.com 满分网在(x1,x2)的根为m,且manfen5.com 满分网成等差数列,设函数f (x)的图象的对称轴方程为x=x,求证:x<m2
查看答案
已知三条直线l1:mx-y+m=0,l2:x+my-m(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.
(I)求证:不论m取何值时,△ABC中总有一个顶点为定点;
(II)当m取何值时,△ABC的面积取最大值、最小值?并求出最值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.