满分5 > 高中数学试题 >

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f=f...

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
(1)根据题意和式子的特点,先令x1=x2=-1求出f(-1)=0,再令x1=-1,x2=x求出f(-x)=f(x),则证出此函数为偶函数; (2)先任取x2>x1>0,再代入所给的式子进行作差变形,利用x2=和且>0,判断符号并得出结论; (3)根据题意和(1)的结论,把不等式转化为f(|2x2-1|)<f(4),再由(2)的结论知|2x2-1|<4,故解此不等式即可. 【解析】 (1)由题意知,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2), 令x1=x2=-1,代入上式解得f(-1)=0, 令x1=-1,x2=x代入上式,∴f(-x)=f(-1•x)=f(-1)+f(x)=f(x), ∴f(x)是偶函数. (2)设x2>x1>0,则= ∵x2>x1>0,∴,∴>0, 即f(x2)-f(x1)>0,∴f(x2)>f(x1) ∴f(x)在(0,+∞)上是增函数. (3)∵f(2)=1,∴f(4)=f(2)+f(2)=2, ∵f(x)是偶函数,∴不等式f(2x2-1)<2可化为f(|2x2-1|)<f(4), 又∵函数在(0,+∞)上是增函数,∴|2x2-1|<4,且2x2-1≠0, 即-4<2x2-1<4,且2x2≠1解得:,且x≠, 即不等式的解集为{x|,且x≠}.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2+bx+1(a,b为为实数),x∈R.
(1)若函数f(x)的最小值是f(-1)=0,求f(x)的解析式;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.
查看答案
记函数f(x)=manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求实数a的取值范围.
查看答案
下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是    查看答案
偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,则y=f(x)的解析式为    查看答案
已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.