满分5 > 高中数学试题 >

已知函数函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称. (1)...

已知函数函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称.
(1)求f(0)的值
(2)证明函数f(x)是周期函数
(3)若f(x)=x(0<x≤1),求x∈R时,函数f(x)的解析式,并画出满足条件的函数f(x)至少一个周期的图象.
(1)由函数f(x)是奇函数,所以f(-x)=-f(x),令x=0 可得f(0)=0. (2)根据f(-x)=-f(x),再由函数f(x)的图象关于直线x=1对称,f(-x)=f(2+x),可得f(2+x)=-f(x),从而得到 f(4+x)=f(x),从而结论成立. (3)由条件求出当-1≤x≤1时f(x)=x,当1<x<3时,则-1<2-x<1,可得f(2-x)=2-x,而函数f(x)的图象关于直线x=1对称,所以f(2-x)=f(x),即f(x)=2-x. 从而得到f(x)在一个周期内的解析式,从而得到f(x)在定义域内的解析式,从而画出函数的图象. (1)【解析】 因为函数f(x)是奇函数,所以f(-x)=-f(x),又f(x)的定义域为R,令x=0,则f(-0)=-f(0),所以f(0)=0. (2)证明:因为函数f(x)是奇函数,所以f(-x)=-f(x). 又函数f(x)的图象关于直线x=1对称,所以f(-x)=f(2+x),即f(2+x)=-f(x). 所以f(4+x)=-f(2+x)=f(x),即f(x)是以4为一个周期的周期函数. (3)【解析】 设-1≤x<0时,则0<-x≤1,所以f(-x)=-x. 又f(-x)=-f(x),所以f(x)=x,又f(0)=0, 所以,当-1≤x≤1时,f(x)=x. 当1<x<3时,-3<-x<-1,则-1<2-x<1. 所以f(2-x)=2-x,而函数f(x)的图象关于直线x=1对称, 所以f(2-x)=f(x),即f(x)=2-x. 所以f(x)=. 再由f(x)是以4为一个周期的周期函数,从而有f(x)=,(k∈Z). 如图所示:
复制答案
考点分析:
相关试题推荐
设k∈R,函数manfen5.com 满分网,F(x)=f(x)-kx,x∈R,试讨论函数F(x)的单调性.
查看答案
已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
查看答案
已知函数f(x)=ax2+bx+1(a,b为为实数),x∈R.
(1)若函数f(x)的最小值是f(-1)=0,求f(x)的解析式;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.
查看答案
记函数f(x)=manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求实数a的取值范围.
查看答案
下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.