满分5 > 高中数学试题 >

∫2(3x2+k)dx=10,则k= .

2(3x2+k)dx=10,则k=   
欲求k的值,只须求出函数3x2+k的定积分值即可,故先利用导数求出3x2+k的原函数,再结合积分定理即可求出用k表示的定积分.最后列出等式即可求得k值. 【解析】 ∵∫2(3x2+k)dx =(x3+kx)|2 =23+2k. 由题意得: 23+2k=10, ∴k=1. 故答案为:1.
复制答案
考点分析:
相关试题推荐
定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得 f(x)≥g(x)对一切实数x都成立,那么称为 g(x)为函数 f(x)的一个承托函数,给出如下命题:
(1)定义域和值域都是R的函数f(x)不存在承托函数;
(2)g(x)=2x为函数f(x)=2x的一个承托函数;
(3)g(x)=ex为函数f(x)=ex的一个承托函数;
(4)函数manfen5.com 满分网,若函数g(x)的图象恰为f(x)在点manfen5.com 满分网处的切线,则g(x)为函数f(x)的一个承托函数.其中正确的命题的个数是( )
A.0
B.1
C.2
D.3
查看答案
若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( )
A.若m⊂β,α⊥β,则m⊥α
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β
C.若α⊥γ,α⊥β,则β∥γ
D.若m⊥β,m∥α,则α⊥β
查看答案
设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为( )
A.(-1,0)∪(1,+∞)
B.(-1,0)∪(0,1)
C.(-∞,-1)∪(1,+∞)
D.(-∞,-1)∪(0,1)
查看答案
设f(x)=manfen5.com 满分网,函数图象与x轴围成封闭区域的面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)可能( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.