满分5 > 高中数学试题 >

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1...

manfen5.com 满分网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
(I)设BD与AC交于O,则BD⊥AC,连接A1O,以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,求出与的坐标,计算它们的数量积从而得到BD⊥AA1 (II)平面AA1C1C的一个法向量为n1=(1,0,0),求出平面AA1D的一个法向量n2,计算两法向量的余弦值从而得到二面角D-A1A-C的平面角的余弦值; (III)假设在直线CC1上存在点P,使BP∥平面DA1C1,设,求出平面DA1C1的法向量n3,根据法向量n3与垂直求出λ的值,从而得到点P在C1C的延长线上,且C1C=CP. 【解析】 设BD与AC交于O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°, 所以A1O2=AA12+AO2-2AA1•AOcos60°=3, 所以AO2+A1O2=AA12,所以A1O⊥AO. 由于平面AA1C1C⊥平面ABCD,所以A1O⊥平面ABCD. 以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),,C(0,1,0),,, (I)由于,,∴BD⊥AA1 (II)由于OB⊥平面AA1C1C, ∴平面AA1C1C的一个法向量为n1=(1,0,0) 设n2⊥平面AA1D,则, 设n2=(x,y,z),则 取,∴ 所以,二面角D-A1A-C的平面角的余弦值为 (III)假设在直线CC1上存在点P,使BP∥平面DA1C1,设,则,从而有 设n3⊥平面DA1C1,则,又 设n3=(x3,y3,z3),则,取n3=(1,0,-1) 因为BP∥平面DA1C1,则λ=0,得λ=-1 即点P在C1C的延长线上,且C1C=CP
复制答案
考点分析:
相关试题推荐
某厂生产产品x件的总成本c(x)=1200+manfen5.com 满分网(万元),已知产品单价P(万元)与产品件数x满足:P2=manfen5.com 满分网,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
查看答案
manfen5.com 满分网已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.
查看答案
已知函数f(x)=4x3+ax2+bx+5在x=-1与x=manfen5.com 满分网处有极值.
(Ⅰ)写出函数的解析式;
(Ⅱ)求出函数的单调区间与极值;
(Ⅲ)求f(x)在[-3,2]上的最值.
查看答案
已知函数f(x)的定义域为[-2,+∞),部分对应值如下左表,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,若两正数a,b满足f(2a+b)<1,则manfen5.com 满分网的取值范围是   
x-24
f(x)1-11

manfen5.com 满分网 查看答案
曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.