如图,棱柱ABCD-A
1B
1C
1D
1的所有棱长都等于2,∠ABC和∠A
1B
1C
1均为60°,平面AA
1C
1C⊥平面ABCD.
(I)求证:BD⊥AA
1(II)求二面角D-AA
1-C的余弦值;
(III)在直线CC
1上是否存在点P,使BP∥平面DA
1C
1,若存在,求出点P的位置,若不存在,请说明理由.
考点分析:
相关试题推荐
某厂生产产品x件的总成本c(x)=1200+
(万元),已知产品单价P(万元)与产品件数x满足:P
2=
,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
查看答案
已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.
查看答案
已知函数f(x)=4x
3+ax
2+bx+5在x=-1与x=
处有极值.
(Ⅰ)写出函数的解析式;
(Ⅱ)求出函数的单调区间与极值;
(Ⅲ)求f(x)在[-3,2]上的最值.
查看答案
已知函数f(x)的定义域为[-2,+∞),部分对应值如下左表,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,若两正数a,b满足f(2a+b)<1,则
的取值范围是
.
查看答案
曲线y=x
3+3x
2+6x-10的切线中,斜率最小的切线方程是
.
查看答案