满分5 > 高中数学试题 >

设函数. (1)求f(x)的单调区间和极值; (2)是否存在实数a,使得关于x的...

设函数manfen5.com 满分网
(1)求f(x)的单调区间和极值;
(2)是否存在实数a,使得关于x的不等式f(x)≥a的解集为(0,+∞)?若存在,求a的取值范围;若不存在,试说明理由.
(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间,讨论满足fˊ(x)=0的点附近的导数的符号的变化情况,来确定极值点,求出极值. (2)对a进行讨论,当a≤0时,f(x)>0恒成立,关于x的不等式f(x)≥a的解集为(0,+∞)符合题意.当a>0时,关于x的不等式f(x)≥a的解集不是(0,+∞). 【解析】 (Ⅰ).(2分) 故当x∈(0,1)时,f'(x)>0,x∈(1,+∞)时,f'(x)<0. 所以f(x)在(0,1)单调递增,在(1,+∞)单调递减.(4分) 由此知f(x)在(0,+∞)的极大值为f(1)=ln2,没有极小值.(6分) (Ⅱ)(ⅰ)当a≤0时, 由于, 故关于x的不等式f(x)≥a的解集为(0,+∞).(10分) (ⅱ)当a>0时,由知,其中n为正整数,且有.(12分) 又n≥2时,. 且. 取整数n满足,,且n≥2, 则, 即当a>0时,关于x的不等式f(x)≥a的解集不是(0,+∞). 综合(ⅰ)(ⅱ)知,存在a,使得关于x的不等式f(x)≥a的解集为(0,+∞),且a的取值范围为(-∞,0].
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax-2lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的伴随切线.当a=2时,已知两点A(1,f(1)),B(e,f(e)),试求弦AB的伴随切线l的方程;
(Ⅲ)设manfen5.com 满分网,若在[1,e]上至少存在一个x,使得f(x)>g(x)成立,求实数a的取值范围.
查看答案
已知函数f(x)=x2-x+alnx
(1)当x≥1时,f(x)≤x2恒成立,求a的取值范围;
(2)讨论f(x)在定义域上的单调性.
查看答案
manfen5.com 满分网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
查看答案
某厂生产产品x件的总成本c(x)=1200+manfen5.com 满分网(万元),已知产品单价P(万元)与产品件数x满足:P2=manfen5.com 满分网,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
查看答案
manfen5.com 满分网已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.