由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF,且底面是一个直角三角形,由三视图中所标数据易计算出三棱柱中各棱长的值.
(1)取BF的中点G,连接MG、NG,利用中位线的性质结合线面平行的充要条件,易证明结论
(2)多面体A-CDEF的体积是一个四棱锥,由三视图易求出棱锥的底面面积和高,进而得到棱锥的体积.
【解析】
由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF,
且AB=BC=BF=2,DE=CF=2,∴∠CBF=.
(1)证明:取BF的中点G,连接MG、NG,
由M,N分别为AF,BC的中点可得,NG∥CF,MG∥EF,
∴平面MNG∥平面CDEF,又MN⊂平面MNG,
∴MN∥平面CDEF.
(2)取DE的中点H.
∵AD=AE,∴AH⊥DE,
在直三棱柱ADE-BCF中,
平面ADE⊥平面CDEF,
平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.
∴多面体A-CDEF是以AH为高,以矩形CDEF为底面的棱锥,在△ADE中,AH=.
S矩形CDEF=DE•EF=4,
∴棱锥A-CDEF的体积为
V=•S矩形CDEF•AH=×4×=.