满分5 > 高中数学试题 >

已知函数有两个零点x1,x2,则有( ) A.x1x2<0 B.x1x2=1 C...

已知函数manfen5.com 满分网有两个零点x1,x2,则有( )
A.x1x2<0
B.x1x2=1
C.x1x2>1
D.0<x1x2<1
先将f(x)=|lgx|-()x有两个零点转化为y=|lgx|与y=2-x有两个交点,然后在同一坐标系中画出两函数的图象得到零点在(0,1)和(1,+∞)内,即可得到-2-x1=lgx1和2-x2=lg x2,然后两式相加即可求得x1x2的范围. 【解析】 f(x)=|lgx|-()x有两个零点x1,x2 即y=|lgx|与y=2-x有两个交点 由题意x>0,分别画y=2-x和y=|lgx|的图象 发现在(0,1)和(1,+∞)有两个交点 不妨设 x1在(0,1)里 x2在(1,+∞)里 那么 在(0,1)上有 2-x1=-lgx1,即-2-x1=lgx1…① 在(1,+∞)有2-x2=lg x2…② ①②相加有2-x2-2-x1=lgx1x2 ∵x2>x1,∴2-x2<2-x1 即2-x2-2-x1<0 ∴lgx1x2<0 ∴0<x1x2<1 故选D.
复制答案
考点分析:
相关试题推荐
由直线manfen5.com 满分网,x=2,曲线manfen5.com 满分网及x轴所围图形的面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.2ln2
查看答案
若函数manfen5.com 满分网的定义域为A,函数g(x)=lg(x-1),x∈[2,11]的值域为B,则A∩B为( )
A.(-∞,1)
B.(-∞,1]
C.[0,1]
D.(0,1]
查看答案
函数f(x)=ax-1+4(a>0,且a≠1)的图象过一个定点,则这个定点坐标是( )
A.(5,1)
B.(1,5)
C.(1,4)
D.(4,1)
查看答案
已知数列{an} 是公差为d(d≠0)的等差数列,Sn为其前n项和.
(1)若a2,a3,a6依次成等比数列,求其公比q;
(2)若manfen5.com 满分网,求证:对任意的m,n∈N*,向量manfen5.com 满分网与向量manfen5.com 满分网共线;
(3)若a1=1,manfen5.com 满分网manfen5.com 满分网,问是否存在一个半径最小的圆,使得对任意的n∈N*,点Qn都在这个圆内或圆周上.
查看答案
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,-2),点C满足manfen5.com 满分网,其中m,n∈R且m-2n=1.
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线manfen5.com 满分网(a>0,b>0且a≠b)交于M、N两点,且以MN为直径的圆过原点,求证:manfen5.com 满分网为定值;
(3)在(2)的条件下,若双曲线的离心率不大于manfen5.com 满分网,求双曲线实轴长的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.