①由正方体的性质得BD∥B1D1,所以结合线面平行的判定定理可得答案;
②由正方体的性质得 AC⊥BD,再由三垂线定理可得答案.
③由正方体的性质得 BD∥B1D1,并且结合②可得AC1⊥B1D1,同理可得AC1⊥CB1,进而结合线面垂直的判定定理得到答案.
【解析】
由正方体的性质得,BD∥B1D1,所以结合线面平行的判定定理可得:BD∥平面CB1D1;所以①正确.
由正方体的性质得 AC⊥BD,因为AC是AC1在底面ABCD内的射影,所以由三垂线定理可得:AC1⊥BD,所以②正确.
由正方体的性质得 BD∥B1D1,由②可得AC1⊥BD,所以AC1⊥B1D1,同理可得AC1⊥CB1,进而结合线面垂直的判定定理得到:AC1⊥平面CB1D1 ,所以③正确.
故选D.