满分5 > 高中数学试题 >

已知f(x)=(x∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a的值组成的...

已知f(x)=manfen5.com 满分网(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=manfen5.com 满分网的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(Ⅰ)函数单调递增导数大于等于零列出不等式解之 (Ⅱ)根据一元二次方程根与系数的关系写出不等式先看成关于a的不等式恒成立再看成关于t的一次不等式恒成立,让两端点大等于零 【解析】 (Ⅰ)f'(x)==, ∵f(x)在[-1,1]上是增函数, ∴f'(x)≥0对x∈[-1,1]恒成立, 即x2-ax-2≤0对x∈[-1,1]恒成立.① 设φ(x)=x2-ax-2, 方法一:φ ①⇔⇔-1≤a≤1, ∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0 ∴A={a|-1≤a≤1}.方法二: ①⇔或 ⇔0≤a≤1或-1≤a≤0 ⇔-1≤a≤1. ∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0 ∴A={a|-1≤a≤1}. (Ⅱ)由,得x2-ax-2=0,∵△=a2+8>0 ∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2, 从而|x1-x2|==. ∵-1≤a≤1,∴|x1-x2|=≤3. 要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立, 当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立, 即m2+tm-2≥0对任意t∈[-1,1]恒成立.② 设g(t)=m2+tm-2=mt+(m2-2), 方法一: ②⇔g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0, ⇔m≥2或m≤-2. 所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}. 方法二: 当m=0时,②显然不成立; 当m≠0时, ②⇔m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0 ⇔m≥2或m≤-2. 所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=log2(x+m),m∈R
( I)若f(1),f(2),f(4)成等差数列,求m的值;
( II)若a、b、c是两两不相等的正数,且a、b、c依次成等差数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
查看答案
某公司要将一批不易存放的蔬菜从A地运到B 地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:
运输工具途中速度
(km/h)
途中费用
(元/km)
装卸时间
(h)
装卸费用
(元)
汽车50821000
火车100442000
若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,试根据A、B两地距离大小比较采用哪种运输工具较好(即运输过程中的费用与损耗费用之和最小)?
查看答案
在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,已知manfen5.com 满分网manfen5.com 满分网,三角形面积为manfen5.com 满分网
(1)求∠C的大小;
(2)求a+b的值.
查看答案
如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,且PA=AB=2,E为PD中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)证明:平面PCD⊥平面PAD.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率manfen5.com 满分网,求椭圆方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.