首先令x<0,则-x>0,结合已知条件和奇函数的性质,求出此时f(x)的解析式,又f(0)=0,故f(x)在R上的解析式即可求出,然后分x>0和x<0两种情况分别求出f(x)>0的解集,最后求其并集.
【解析】
∵函数f(x)为奇函数,
∴f(-x)=-f(x),即f(x)=-f(-x),∵x<0时,-x>0,
∴f(-x)=log2(-x)=-f(x),即f(x)=-log2(-x),
当x=0时,f(0)=0;
∴f(x)= 当x>0时,由log2x>0解得x>1,当x<0时,由-log2(-x)>0解得x>-1,
∴-1<x<0,综上,得x>1或-1<x<0,故x的取值范围为(-1,0)U(1,+∞).
故答案为:(-1,0)U(1,+∞).