满分5 > 高中数学试题 >

已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜...

已知双曲线manfen5.com 满分网的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
双曲线的渐近线方程是y=,过右焦点F(4,0)分别作两条渐近线的平行线l1和l2,由图形可知,符合条件的直线的斜率的范围是[-]. 【解析】 双曲线的渐近线方程是y=, 右焦点F(4,0), 过右焦点F(4,0)分别作两条渐近线的平行线l1和l2, 由图形可知,符合条件的直线的斜率的范围是[-]. 故选C.
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为manfen5.com 满分网,则此椭圆的方程为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
直线l的倾斜角为θ,manfen5.com 满分网,则斜率k的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数f(x)=x3-6x2的定义域为[-2,t],设f(-2)=m,f(t)=n,f′(x)是f(x)的导数.
(Ⅰ)求证:n≥m;
(Ⅱ)确定t的范围使函数f(x)在[-2,t]上是单调函数;
(Ⅲ)求证:对于任意的t>-2,总存在x∈(-2,t),满足manfen5.com 满分网;并确定这样的x的个数.
查看答案
设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an
(Ⅲ)设bn=manfen5.com 满分网,求证:b1+b2+…+bn<1.
查看答案
函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.