满分5 > 高中数学试题 >

已知平面区域D由以A(1,3),B(5,2),C(3,1)为顶点的三角形内部以及...

已知平面区域D由以A(1,3),B(5,2),C(3,1)为顶点的三角形内部以及边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=( )
A.-2
B.-1
C.1
D.4
将目标函数z=x+my化成斜截式方程后得:y=-x+z,若m>0时,目标函数值Z与直线族:y=-x+z截距同号,当直线族y=-x+z的斜率与直线AC的斜率相等时,目标函数z=x+my取得最小值的最优解有无数多个;若m<0时,目标函数值Z与直线族:y=-x+z截距异号,当直线族y=-x+z的斜率与直线BC的斜率相等时,目标函数z=x+my取得最小值的最优解有无数多个.但由于AC与BC的斜率为负,则不满足第二种情况,由此不难得到m的值. 【解析】 依题意,满足已知条件的三角形如下图示: 令z=0,可得直线x+my=0的斜率为-, 结合可行域可知当直线x+my=0与直线AC平行时, 线段AC上的任意一点都可使目标函数z=x+my取得最小值, 而直线AC的斜率为=-1, 所以-=-1,解得m=1, 故选C. 增加网友的解法,相当巧妙值得体会!请看: 依题意,1+3m=5+2m<3+m,或1+3m=3+m<5+2m,或3+m=5+2m<1+3m 解得 m∈空集,或m=1,或m∈空集, 所以m=1,选C. 评析:此解法妙在理解了在边界处取到最小值这个命题的内蕴,区域的三个顶点中一定有两个顶点的坐标是最优解,故此两点处函数值相等,小于第三个顶点处的目标函数值,本题略去了判断最优解取到位置的判断,用三个不等式概括了三种情况,从而解出参数的范围,此方法可以在此类求参数的题中推广,具有一般性!
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网=1(a>0,b>0)的离心率e=manfen5.com 满分网,右焦点F(c,0),方程ax2+bx-c=0的两个根分别为x1,x2,则点P(x1,x2)在( )
A.圆x2+y2=2内
B.圆x2+y2=2上
C.圆x2+y2=2外
D.以上三种情况都有可能
查看答案
已知点P是双曲线manfen5.com 满分网右支上一点,F是该双曲线的右焦点,点M为线段PF的中点,若|OM|=3,则点P到该双曲线右准线的距离为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知F1、F2是椭圆的两个焦点,满足manfen5.com 满分网manfen5.com 满分网=0的点M总在椭圆内部,则椭圆离心率的取值范围是( )
A.(0,1)
B.(0,manfen5.com 满分网]
C.(0,manfen5.com 满分网
D.[manfen5.com 满分网,1)
查看答案
已知双曲线manfen5.com 满分网的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设椭圆manfen5.com 满分网(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为manfen5.com 满分网,则此椭圆的方程为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.