满分5 > 高中数学试题 >

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,...

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求四棱锥P-ABCD的体积V;
(2)若F为PC的中点,求证PC⊥平面AEF;
(3)求证CE∥平面PAB.

manfen5.com 满分网
(1)利用直角三角形中的边角关系求出BC、AC、CD,由  求得底面的面积, 代入体积公式进行运算. (2)证明AF⊥PC,再由CD⊥平面PAC 证明CD⊥PC,由EF∥CD,可得PC⊥EF,从而得到PC⊥平面AEF. (3)延长DC,AB,设它们交于点N,证明EC是三角形DPN的中位线,可得EC∥PN,从而证明EC∥平面PAB. 【解析】 (1)在Rt△ABC中,AB=1,∠BAC=60°,∴,AC=2. 在Rt△ACD中,AC=2,∠ACD=60°,∴. ∴=. 则. (2)证明:∵PA=CA,F为PC的中点,∴AF⊥PC. ∵PA⊥平面ABCD,∴PA⊥CD,∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,∴CD⊥PC. ∵E为PD中点,F为PC中点,∴EF∥CD,则EF⊥PC,∵AF∩EF=F,∴PC⊥平面AEF. (3)证明:延长DC,AB,设它们交于点N,连PN.∵∠NAC=∠DAC=60°,AC⊥CD, ∴C为ND的中点.∵E为PD中点,∴EC∥PN.∵EC⊄平面PAB,PN⊂平面PAB, ∴EC∥平面PAB.
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别为角A、B、C的对边,manfen5.com 满分网,a=3,△ABC的面积为6,D为△ABC内任一点,点D到三边距离之和为d.
(1)求角A的正弦值;
(2)求边b、c;
(3)求d的取值范围.
查看答案
若关于x的不等式x2<2-|x-a|至少有一个负数解,则实数a的取值范围是    查看答案
设A=(a1,a2,a3),B=manfen5.com 满分网,记AϖB=max{a1b1,a2b2,a3b3},(注:max{a1,a2,…an}表示a1,a2,…an中最大的数),若A=(x-1,x+1,x),manfen5.com 满分网,且AϖB=x-1,则x的取值范围为    查看答案
已知直线(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.则椭圆C的标准方程为    查看答案
已知实数a使得只有一个实数x满足关于x的不等式|x2+2ax+3a|≤2,则满足条件的所有的实数a的个数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.