满分5 > 高中数学试题 >

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面A...

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(I)求证:AC1⊥平面A1BC;
(II)求CC1到平面A1AB的距离;
(III)求二面角A-A1B-C的大小.

manfen5.com 满分网
(I)欲证AC1⊥平面A1BC,根据直线与平面垂直的判定定理可知只需证AC1与平面A1BC内两相交直线垂直,BC⊥AC1,又BA1⊥AC1,满足定理条件; (II)取AA1中点F,则AA1⊥平面BCF,从而面A1AB⊥面BCF,过C作CH⊥BF于H,则CH⊥面A1AB,从而CH就是CC1到平面A1AB的距离,在Rt△BCF中,求出CH即可; (III)过H作HG⊥A1B于G,连CG,根据二面角平面角的定义知∠CGH为二面角A-A1B-C的平面角,在Rt△CGH中求出此角的正弦值即可. (I)证明:因为A1D⊥平面ABC,所以平面AA1C1C⊥平面ABC, 又BC⊥AC,所以BC⊥平面AA1C1C, 得BC⊥AC1,又BA1⊥AC1 所以AC1⊥平面A1BC;(4分) (II)【解析】 因为AC1⊥A1C,所以四边形AA1C1C为菱形, 故AA1=AC=2,又D为AC中点,知∠A1AC=60°. 取AA1中点F,则AA1⊥平面BCF,从而面A1AB⊥面BCF, 过C作CH⊥BF于H,则CH⊥面A1AB, 在Rt△BCF中,,故, 即CC1到平面A1AB的距离为(9分) (III)【解析】 过H作HG⊥A1B于G,连CG,则CG⊥A1B, 从而∠CGH为二面角A-A1B-C的平面角, 在Rt△A1BC中,A1C=BC=2,所以, 在Rt△CGH中,, 故二面角A-A1B-C的大小为.(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,证明manfen5.com 满分网
查看答案
(坐标系与参数方程)求直线manfen5.com 满分网(t为参数)被曲线manfen5.com 满分网所截的弦长.
查看答案
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆manfen5.com 满分网在M-1的作用下的新曲线的方程.
查看答案
如图,在△ABC中,AB=AC,以AB为直径的圆交AC于D.求证:BC2=2CD•AC.
查看答案
已知a为实数,数列{an}满足a1=a,当n≥2时,manfen5.com 满分网
(Ⅰ)当a=100,时,求数列{an}的前100项的和S100
(Ⅱ)证明:对于数列{an},一定存在k∈N*,使0<ak≤3;
(Ⅲ)令manfen5.com 满分网,当2<a<3时,求证:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.