满分5 > 高中数学试题 >

已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),且函数f...

已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)与g(x)的图象在y轴上的截距相等.
(I)求a的值;
(II)求函数h(x)=f(x)+g(x)的单调递增区间.
(I)由已知中函数f(x)与g(x)的图象在y轴上的截距相等,结合函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),我们可以构造关于a的方程,解方程可以求出a的值 (II)由(1)中结论,我们可以得到函数h(x)=f(x)+g(x)的解析式,利用零点分段法,我们可以将其转化为分段函数的形式,再由二次函数的性质,即可分析出函数的单调递增区间. 【解析】 (I)∵函数f(x)与g(x)的图象在y轴上的截距相等 ∴f(0)=g(0),即|a|=1…(2分) 又a>0,所以a=1.           …(4分) (II) 由(I)可知f(x)=|x-1|,g(x)=x2+2x+1…(6分) ∴…(9分) ∴.,…(11分) , ∴.…(13分) …(14分)
复制答案
考点分析:
相关试题推荐
如图,动点P从边长为1的正方形ABCD的顶点A开始,顺次经B、C、D绕边界一周,当x表示点P的行程,y表示PA之长时,
(I) 求y关于x的解析式,
(II) 求x=2时,y的值.

manfen5.com 满分网 查看答案
如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.
(Ⅰ)求证:PA∥平面BDF;
(Ⅱ)求证:平面PAC⊥平面BDF.

manfen5.com 满分网 查看答案
已知定义域为R的奇函数f(x)在[0,+∞)上为减函数,判断 f(x)在(-∞,0)上的单调性并给以证明.
查看答案
设全集U=R,集合A={x|6-x-x2>0},集合manfen5.com 满分网
(Ⅰ)求集合A与B;
(Ⅱ)求A∩B,(CUA)∪B.
查看答案
如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.