满分5 > 高中数学试题 >

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0...

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆的方程;
(2)若直线ax-y+5=0(a≠0)与圆相交于A,B两点,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
(1)由题意圆心在x轴,且圆心横坐标是整数,设出圆心M的坐标,然后利用点到直线的距离公式表示出圆心到已知直线的距离d,根据直线与圆相切,得到d与半径r相等,列出关于m的不等式,求出不等式的解即可得到m的值,确定出圆心坐标,由圆心坐标和半径写出圆的标准方程即可; (2)假设符合条件的实数a存在,由a不为0,根据两直线垂直时斜率的乘积为-1,由直线ax-y+5=0的斜率表示出直线l方程的斜率,再由P的坐标和表示出的斜率表示出直线l的方程,根据直线l垂直平分弦AB,得到圆心M必然在直线l上,所以把M的坐标代入直线l方程中,得到关于a的方程,求出方程的解即可得到a的值,把求出的a的值代入确定出直线l的方程,经过检验发现直线ax-y+5=0与圆有两个交点,故存在. 【解析】 (1)设圆心为M(m,0)(m∈Z). 由于圆与直线4x+3y-29=0相切,且半径为5, 所以,即|4m-29|=25. 即4m-29=25或4m-29=-25, 解得m=或m=1, 因为m为整数,故m=1, 故所求的圆的方程是(x-1)2+y2=25; (2)设符合条件的实数a存在, ∵a≠0,则直线l的斜率为,l的方程为,即x+ay+2-4a=0. 由于l垂直平分弦AB,故圆心M(1,0)必在l上. 所以1+0+2-4a=0,解得. 经检验时,直线ax-y+5=0与圆有两个交点, 故存在实数,使得过点P(-2,4)的直线l垂直平分弦AB.
复制答案
考点分析:
相关试题推荐
若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为manfen5.com 满分网,则直线l的倾斜角的取值范围是   
A.manfen5.com 满分网B.manfen5.com 满分网C.manfen5.com 满分网D.manfen5.com 满分网查看答案
如图,把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,在这四个球之间有一个小球和这四个球都外切,则这个小球的半径是   
manfen5.com 满分网 查看答案
设P、A、B、C是球O表面上的四个点,PA、PB、PC两两互相垂直,且PA=3,PB=4,PC=5,则球的表面积为    查看答案
已知点P(2,0),及⊙C:x2+y2-6x+4y+4=0.
(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;
(2)设过点P的直线与⊙C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.
查看答案
manfen5.com 满分网如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.求证:
(1)FD∥平面ABC;
(2)平面EAB⊥平面EDB.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.