满分5 > 高中数学试题 >

已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[...

已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在实数m,使得方程manfen5.com 满分网在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
(1)根据二次函数小于0的解集,设出解析式,利用单调性求得最大值,解出待定系数. (2)将方程等价转化h(x)=0,利用h(x)的导数判断其单调性,利用单调性判断h(x)=0的根的情况. 【解析】 (1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x-5)(a>0). ∴f(x)在区间[-1,4]上的最大值是f(-1)=6a. 由已知得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R). (2)方程等价于方程 2x3-10x2+37=0. 设h(x)=2x3-10x2+37,则h'(x)=6x2-20x=2x(3x-10). 在区间时,h'(x)<0,h(x)是减函数; 在区间(-∞,0),或上,h'(x)>0,h(x)是增函数,故h(0)是极大值,h()是极小值. ∵, ∴方程h(x)=0在区间内分别有惟一实数根,故函数h(x)在(3,4)内有2个零点. 而在区间(0,3),(4,+∞)内没有零点,在(-∞,0)上有唯一的零点. 画出函数h(x)的单调性和零点情况的简图,如图所示. 所以存在惟一的自然数m=3,使得方程在区间(m,m+1)内有且只有两个不同的实数根.
复制答案
考点分析:
相关试题推荐
在△ABC中,a、b、c分别是角A、B、C的对边,且manfen5.com 满分网
(1)求角B的大小;
(2)若manfen5.com 满分网,求△ABC的面积.
查看答案
市工商局于今年3月份,对市内流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶该饮料,并限定每人喝两瓶,求:
(Ⅰ)甲喝两瓶X饮料,均合格的概率;
(Ⅱ)甲、乙、丙每人喝两瓶,恰有一人喝到不合格饮料的概率(精确到0.01).
查看答案
若A,B,C是平面直角坐标系中的共线三点,且 manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,(其中manfen5.com 满分网分别是直角坐标系x轴,y轴方向上的单位向量,O为坐标原点),求实数m,n的值.
查看答案
已知函数f(x)=sinxcosx+manfen5.com 满分网(x∈R)
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调减区间;
(3)求函数f(x)的对称轴方程,对称中心的坐标.
查看答案
定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(x)是周期函数;
②f(x)的图象关于点manfen5.com 满分网中心对称;
③f(x)的图象关于直线x=1对称;
④f(x)在[0,1]上是增函数;
其中正确的判断是    (把所有正确的判断都填上). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.