满分5 > 高中数学试题 >

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ...

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)求cosA+sinC的取值范围.
(1)先利用正弦定理求得sinB的值,进而求得B. (2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围. 【解析】 (Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以, 由△ABC为锐角三角形得. (Ⅱ)===. 由△ABC为锐角三角形知,<A<., 所以. 由此有, 所以,cosA+sinC的取值范围为.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的前n项和为Sn,且a2=1,S11=33.
(1)求{an}的通项公式;
(2)设manfen5.com 满分网,求证:{bn}是等比数列.
查看答案
△ABC的内角A,B,C的对边分别为a,b,c,若a2+c2=b2+ac,且manfen5.com 满分网,求B和C.
查看答案
把数列{2n+1}中各项划分为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),照此下去,第100个括号里各数的和为    查看答案
有一道解三角形的题因纸张破损有一个条件不清,具体如下:在△ABC中,已知manfen5.com 满分网    ,求角A.经推断破损处的条件为三角形一边的长度,且答案提示A=60°,试将条件在横线处补全. 查看答案
Sn是等差数列{an}的前n项和,若a2+a4+a15是一个确定的常数,则在下列各数中也是确定常数的项是    (填上你认为正确的值的序号)
①S7②S8③S13④S16查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.