满分5 > 高中数学试题 >

设数列{an}的首项a1=1,其前n项和Sn满足:3tSn-(2t+3)Sn-1...

设数列{an}的首项a1=1,其前n项和Sn满足:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,…).
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)记{an}的公比为f(t),作数列{bn},使b1=1,manfen5.com 满分网,求和:b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,,又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减,得:3tan-(2t+3)an-1=0,由此能够证明数列{an}为等比数列. (Ⅱ)由,得,所以,由此能求出(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n之和. 【解析】 (Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,∴ 又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减, 得:3tan-(2t+3)an-1=0, ∴(n=3,4,) 综上,数列{an}为首项为1,公比为的等比数列 (Ⅱ)由,得, 所以{bn}是首项为1,,公差为的等差数列,b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1=(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n==
复制答案
考点分析:
相关试题推荐
已知函数f(x)=e2x-aex+x,x∈R.
(Ⅰ)当a=3时,求函数f(x)的极大值和极小值;
(Ⅱ)若函数f(x)在(0,ln2)上是单调递增函数,求实数a的取值范围.
查看答案
已知平面上的两个定点O(0,0),A(0,3),动点M满足|AM|=2|OM|.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)若经过点manfen5.com 满分网的直线l被动点M的轨迹E截得的弦长为2,求直线l的方程.
查看答案
设△ABC的内角A、B、C的对边分别为a、b、c,且A=manfen5.com 满分网,a=2bcosC,求:
(Ⅰ)角B的值;
(Ⅱ)函数f(x)=sin2x+cos(2x-B)在区间manfen5.com 满分网上的最大值及对应的x值.
查看答案
直线manfen5.com 满分网与抛物线y2=4x相交于A、B两点,与x轴相交于点F,若manfen5.com 满分网,则manfen5.com 满分网=    查看答案
manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.