满分5 > 高中数学试题 >

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k...

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(I)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(II)对任何具有性质P的集合A,证明:manfen5.com 满分网
(III)判断m和n的大小关系,并证明你的结论.
(I)利用性质P的定义判断出具有性质P的集合,利用集合S,T的定义写出S,T. (II)据具有性质P的集合满足a∈A,总有-a∉A,得到0∉A得到(ai,ai)∉T;当(ai,aj)∈T时,(aj,ai)∉T,求出T中的元素个数. (III)对应S中的元素据S,T的定义得到也是T中的元素,反之对于T中的元素也是s中的元素,得到两个集合中的元素相同. (I)【解析】 集合{0,1,2,3}不具有性质P. 集合{-1,2,3}具有性质P,其相应的集合S和T是 S=(-1,3),(3,-1),T=(2,-1),(2,3). (II)证明:首先,由A中元素构成的有序数对(ai,aj)共有k2个. 因为0∉A,所以(ai,ai)∉T(i=1,2,,k); 又因为当a∈A时,-a∉A时,-a∉A, 所以当(ai,aj)∈T时,(aj,ai)∉T(i,j=1,2,,k). 从而,集合T中元素的个数最多为, 即. (III)【解析】 m=n,证明如下: (1)对于(a,b)∈S,根据定义, a∈A,b∈A,且a+b∈A,从而(a+b,b)∈T. 如果(a,b)与(c,d)是S的不同元素, 那么a=c与b=d中至少有一个不成立, 从而a+b=c+d与b=d中也至少有一个不成立. 故(a+b,b)与(c+d,d)也是T的不同元素. 可见,S中元素的个数不多于T中元素的个数,即m≤n, (2)对于(a,b)∈T,根据定义,a∈A,b∈A, 且a-b∈A,从而(a-b,b)∈S. 如果(a,b)与(c,d)是T的不同元素, 那么a=c与b=d中至少有一个不成立, 从而a-b=c-d与b=d中也不至少有一个不成立, 故(a-b,b)与(c-d,d)也是S的不同元素. 可见,T中元素的个数不多于S中元素的个数,即n≤m, 由(1)(2)可知,m=n.
复制答案
考点分析:
相关试题推荐
设a1,a2,a3,a4,a5为自然数,A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},且a1<a2<a3<a4<a5,并满足A∩B={a1,a4},a1+a4=10,A∪B中各元素之和为256,求集合A?
查看答案
数集A满足条件:若a∈A,a≠1,则manfen5.com 满分网
①若2∈A,试举出A中另外两个元素;
②若A为单元集,求出A和a.
查看答案
已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且A∩B=B,求实数m的取值范围.
查看答案
设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∪B=A,求实数a的值.
查看答案
设A={-4,2a-1,a2},B={9,a-5,1-a},若A∩B={9},求实数a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.