满分5 > 高中数学试题 >

已知偶函数f(x)=log4(4x+1)+kx(k∈R), (Ⅰ)求k的值; (...

已知偶函数f(x)=log4(4x+1)+kx(k∈R),
(Ⅰ)求k的值;
(Ⅱ)设manfen5.com 满分网,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
(Ⅰ)根据偶函数可知f(x)=f(-x),取x=-1代入即可求出k的值; (Ⅱ)函数f(x)与g(x)的图象有且只有一个公共点,则方程f(x)=g(x)有且只有一个实根,化简可得有且只有一个实根,令t=2x>0,则转化成方程有且只有一个正根,讨论a=1,以及△=0与一个正根和一个负根,三种情形,即可求出实数a的取值范围. 【解析】 (Ⅰ)由f(x)=f(-x)得到:f(-1)=f(1)⇒log4(4-1+1)-k=log4(4+1)+k, ∴. (Ⅱ)函数f(x)与g(x)的图象有且只有一个公共点 即方程有且只有一个实根 化简得:方程有且只有一个实根 令t=2x>0,则方程有且只有一个正根 ①,不合题意; ②或-3 若,不合题意;若 ③若一个正根和一个负根,则,即a>1时,满足题意. 所以实数a的取值范围为{a|a>1或a=-3}
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,数列{an}满足a1=1,an+1=f(an),n∈N*
(Ⅰ)求证:数列manfen5.com 满分网是等差数列;
(Ⅱ)令bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若manfen5.com 满分网对一切n∈N*成立,求最小正整数m.
查看答案
设函数f(x)=cos(x+manfen5.com 满分网π)+2manfen5.com 满分网,x∈R.
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=manfen5.com 满分网,求a的值.
查看答案
已知命题P:函数manfen5.com 满分网在(1,+∞)内单调递增;命题Q:不等式(a-3)x2+(2a-6)x-5<0对任意实数x恒成立,
若P∨Q是真命题,P∧Q是假命题,求实数a的取值范围.
查看答案
在区间[t,t+1]上满足不等式|x3-3x+1|≥1的解有且只有一个,则实数t的取值范围为    查看答案
等差数列{an}的前n项和为Sn,首项a1与公差d均为自然数,已知集合M={(a1,d)|S11<143且a1,a2,a4成等比数列},若函数manfen5.com 满分网恰好经过集合M中的两个点,则满足条件的函数有    个. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.