满分5 > 高中数学试题 >

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为...

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.
(Ⅰ)由题意得直线BD的方程,根据四边形ABCD为菱形,判断出AC⊥BD.于是可设出直线AC的方程与椭圆的方程联立,根据判别式大于0求得n的范围,设A,C两点坐标分别为(x1,y1),(x2,y2),根据韦达定理求得x1+x2和x1x2,代入直线方程可表示出y1+y2,进而可得AC中点的坐标,把中点代入直线y=x+1求得n,进而可得直线AC的方程. (Ⅱ)根据四边形ABCD为菱形判断出∠ABC=60°且|AB|=|BC|=|CA|.进而可得菱形ABCD的面积根据n的范围确定面积的最大值. 【解析】 (Ⅰ)由题意得直线BD的方程为y=x+1. 因为四边形ABCD为菱形,所以AC⊥BD. 于是可设直线AC的方程为y=-x+n. 由得4x2-6nx+3n2-4=0. 因为A,C在椭圆上, 所以△=-12n2+64>0,解得. 设A,C两点坐标分别为(x1,y1),(x2,y2), 则,,y1=-x1+n,y2=-x2+n. 所以. 所以AC的中点坐标为. 由四边形ABCD为菱形可知,点在直线y=x+1上, 所以,解得n=-2. 所以直线AC的方程为y=-x-2,即x+y+2=0. (Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°, 所以|AB|=|BC|=|CA|. 所以菱形ABCD的面积. 由(Ⅰ)可得, 所以. 所以当n=0时,菱形ABCD的面积取得最大值.
复制答案
考点分析:
相关试题推荐
已知抛物线y2=2px(p>0)与直线y=-x+1相交于A、B两点,以弦长AB为直径的圆恰好过原点,求此抛物线的方程.
查看答案
正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,求这个正三角形的边长.
查看答案
求与圆(x-3)2+y2=1及(x+3)2+y2=9都外切的动圆圆心的轨迹方程.
查看答案
已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.
查看答案
若直线y=ax-1(a∈R)与焦点在x轴上的椭圆manfen5.com 满分网+manfen5.com 满分网=1总有公共点,则m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.