先求出公共焦点分别为F1,F2,再根据椭圆和双曲线的定义列式求出焦半径,由此可以求出 ,cos∠F1PF2,最后利用三角形面积公式计算即可.
【解析】
由题意知椭圆与双曲线共焦点,焦点为F1(-4,0),F2(4,0),
根据椭圆的定义得:PF1+PF2=10,
根据双曲线的定义得:PF1-PF2=2,
∴PF1=5+,PF2=5-,
在三角形PF1F2中,又F1F2=8
由余弦定理得:
cos∠F1PF2==
P与双曲线二焦点F1F2连线构成三角形面积为S=PF1•PF2sin∠F1PF2=(5+)(5-)×=3
故选D.