(1)根据cn=an-bn,c1=0,,,建立方程组,解之即可求出数列{an},{bn}的通项公式;
(2)讨论n的奇偶,当n偶数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1=a2(a1-a3)+a4(a3 -a5)…+an(an-1-an+1),当n奇数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1=a2(a1-a3)+a4(a3 -a5)…+an-1(an-2-an)+anan+1进行求解即可.
【解析】
(1)c1=0,则c1=a1-b1=0
=a1+a2+b1+b2=2a1+d+b1+b1q
=3a1+3d+b1+b1q+b1q2
=4a1+6d+b1+b1q+b1q2+b1q3.
解得:a1=b1=1,d=,q=
∴,
(2)当n偶数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an(an-1-an+1)
=-(a2+a4+…+an)
=
当n奇数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an-1(an-2-an)+anan+1
=-+
=