满分5 > 高中数学试题 >

设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(...

设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给下列命题:
(1)f(x)-4=0与f'(x)=0有一个相同的实根;
(2)f(x)=0与f'(x)=0有一个相同的实根;
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根;
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.其中所有正确命题是   
由已知中f(x)=x3+bx2+cx+d,当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,故函数即为极大值,又有极小值,且极大值为4,极小值为0,分析出函数简单的图象和性质后,逐一分析四个结论的正误,即可得到答案. 【解析】 ∵f(x)=x3+bx2+cx+d, 当k<0或k>4时,f(x)-k=0只有一个实根; 当0<k<4时,f(x)-k=0有三个相异实根, 故函数即为极大值,又有极小值,且极大值为4,极小值为0 故f(x)-4=0与f'(x)=0有一个相同的实根,即极大值点,故(1)正确; f(x)=0与f'(x)=0有一个相同的实根,即极小值点,故(2)正确; f(x)+3=0有一实根小于函数最小的零点,f(x)-1=0有三个实根均大于函数最小的零点,故(3)错误; f(x)+3=0有一实根小于函数最小的零点,f(x)-2=0有三个实根均大于函数最小的零点,故(4)错误; 故答案为:(1)(2)(4)
复制答案
考点分析:
相关试题推荐
若函数f(x)=loga(x3-ax)(a>0,a≠1)在区间(manfen5.com 满分网,0)内单调递增,则实数a的取值范围是    查看答案
已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为     查看答案
如果f'(x)是二次函数,且 f'(x)的图象开口向上,顶点坐标为(1,-manfen5.com 满分网),那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是    查看答案
若函数f(x)对于任意实数x满足条件f(x)•f(x+2)=-1,f(1)=-5,则f[f(5)]=    查看答案
给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2-x(x>0)的反函数是y=-log2x(x>0);
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(-1,0)对称.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.