满分5 > 高中数学试题 >

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处...

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
(Ⅰ)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可; (Ⅱ)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求得区间即为单调区间,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值. 【解析】 (Ⅰ)∵f(x)为奇函数, ∴f(-x)=-f(x) 即-ax3-bx+c=-ax3-bx-c ∴c=0 ∵f'(x)=3ax2+b的最小值为-12 ∴b=-12 又直线x-6y-7=0的斜率为 因此,f'(1)=3a+b=-6 ∴a=2,b=-12,c=0. (Ⅱ)f(x)=2x3-12x.,列表如下: 所以函数f(x)的单调增区间是和 ∵f(-1)=10,,f(3)=18 ∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+manfen5.com 满分网(x≠0,a∈R)
(1)当a为何值时,函数f(x)为偶函数;
(2)若f(x)在区间[2,+∞)是增函数,求实数a的取值范围.
查看答案
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x-8)<2.
查看答案
(1)已知manfen5.com 满分网,求cosα,tanα的值.
(2)已知角α的终边过点P(-1,2),求sinα,cosα的值.
查看答案
如图,已知圆O的半径为2,从圆O外一点A引切线AD和割线ABC,圆心O到AC的距离为manfen5.com 满分网,AB=3,则切线AD的长为   
manfen5.com 满分网 查看答案
在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.