满分5 > 高中数学试题 >

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)...

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数
(I)求a的值;
(II)求λ的取值范围;
(III)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.
(1)直接利用奇函数的定义f(-x)=-f(x)恒成立代入整理后即可求a的值; (2)利用g′(x)=λ+cosx≤0在[-1,1]上恒成立得出λ≤-cosx再结合三角函数的性质即可求λ的取值范围; (3)先利用函数g(x)在[-1,1]上单调递减,求出其最大值,再把g(x)≤t2-λt+1在x∈[-1,1]上恒成立转化为其最大值小于等于t2-λt+1恒成立,进而得到(1-t)λ+t2+sin1+1≥0(其中λ≤-1)恒成立,再利用二次函数恒成立问题的解法即可求t出的取值范围. 【解析】 (1)∵函数f(x)=ln(ex+a)是实数集R上的奇函数,∴f(0)=0所以a=0.…(3分) (2)g(x)=λf(x)+sinx是区间[-1,1]上的减函数g′(x)=λ+cosx≤0在[-1,1]上恒成立∴λ≤-cosx.…(5分) 又∵cosx∈[cos1,1],∴-cosx∈[-1,-cos1].∴λ≤-1.…(8分) (3)∵g(x)在区间[-1,1]上单调递减,∴g(x)max=g(-1)=-λ-sin1. 只需-λ-sin1≤t2+λt+1.∴恒成立.…(10分) 令h(λ)=(t+1)λ+t2+sin1+1, 则∴ 而t2-t+sin1≥0恒成立,∴t≤-1.…(13分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,点P到两点manfen5.com 满分网manfen5.com 满分网的距离之和等于4,设点P的轨迹为C.
(Ⅰ)写出C的方程;
(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时manfen5.com 满分网manfen5.com 满分网?此时manfen5.com 满分网的值是多少?.
查看答案
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
查看答案
中心在原点,一焦点为F1(0,5manfen5.com 满分网)的椭圆被直线y=3x-2截得的弦的中点横坐标是manfen5.com 满分网,求此椭圆的方程.
查看答案
已知函数f(x)=ax3+(2a-1)x2+1,当x=-1时,函数f(x)有极值.
(I)求实数a的值;
(II)求函数f(x)在在[-1,1]的最大值和最小值.
查看答案
求经过点P(-3,0),Q(0,-2)的椭圆的标准方程,并求出椭圆的长轴长、短轴长、离心率、焦点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.