满分5 > 高中数学试题 >

按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m...

按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为manfen5.com 满分网;如果他买进该产品的单价为n元,则他的满意度为manfen5.com 满分网.如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2,则他对这两种交易的综合满意度为manfen5.com 满分网.现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为mA元和mB元,甲买进A与卖出B的综合满意度为h,乙卖出A与买进B的综合满意度为h
(1)求h和h关于mA、mB的表达式;当manfen5.com 满分网时,求证:h=h
(2)设manfen5.com 满分网,当mA、mB分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
(3)记(2)中最大的综合满意度为h,试问能否适当选取mA,mB的值,使得h≥h和h≥h同时成立,但等号不同时成立?试说明理由.
(1)表示出甲和乙的满意度,整理出最简形式,在条件时,表示出要证明的相等的两个式子,得到两个式子相等. (2)在上一问表示出的结果中,整理出关于变量的符合基本不等式的形式,利用基本不等式求出两个人满意度最大时的结果,并且写出等号成立的条件. (3)先写出结论:不能由(2)知h=.因为h甲h乙≤,不能取到mA,mB的值,使得h甲≥h和h乙≥h同时成立,但等号不同时成立. 【解析】 (1)甲:买进A的满意度为hA1=,卖出B的满意度为hB1=; 所以,甲买进A与卖出B的综合满意度为h甲===; 乙:卖出A的满意度为:hA2=,买进B的满意度为:hB2=; 所以,乙卖出A与买进B的综合满意度h乙===;  当时,h甲==, h乙==,所以h甲=h乙 (2)设mB=x(其中x>0),当时, h甲=h乙==≤==; 当且仅当x=,即x=10时,上式“=”成立,即mB=10,mA=×10=6时, 甲、乙两人的综合满意度均最大,最大综合满意度为 (3)不能由(2)知h=.因为h甲h乙≤ 因此,不能取到mA,mB的值,使得h甲≥h和h乙≥h同时成立,但等号不同时成立.
复制答案
考点分析:
相关试题推荐
设函数f(x)=xekx(k≠0).
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.
查看答案
已知函数地f(x)的定义域是{x|x∈R,manfen5.com 满分网Z},且f(x)+f(2-x)=0,manfen5.com 满分网,当manfen5.com 满分网时,f(x)=3x
(1)求证:f(x)是奇函数;
(2)求f(x)在区间manfen5.com 满分网Z)上的解析式.
查看答案
(1)求函数manfen5.com 满分网(a>0,且a≠1)的定义域;
(2)已知函数y=logax(ax-a+2)(a>0,且a≠1)的值域是R,求a的取值范围.
查看答案
已知图象变换:①关于y轴对称;②关于x轴对称; ③右移1个单位; ④左移一个单位; ⑤右移manfen5.com 满分网个单位; ⑥左移manfen5.com 满分网个单位; ⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=ex的图象经过上述某些变换可得y=e1-2x的图象,这些变换可以依次是    (请填上变换的序号). 查看答案
规定记号“*”表示一种运算,即a*b=manfen5.com 满分网+a+b,a,b是正实数,已知1*k=7,则函数f(x)=k*x的值域是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.