(1)根据an∈(0,3]时,则an+1=2an∈(0,6],当an∈(3,6]时,则an+1=an-3∈(0,3],故知an+1∈(0,6],所以当0<an≤6时,总有0<an+1≤6,
(2)分类讨论a的值,当a=1时满足题意的k=3t,同理证明a=2或4时,k和t的关系,再证明a=5或a≥7时k与t之间的关系,
(3)由m∈N*,可得2m-1≥1,故,然后证明当1<k≤m时2k-1a的取值范围,根据数列求和的知识点求出{an}的前m项的和sm.
【解析】
(1)当an∈(0,3]时,则an+1=2an∈(0,6],当an∈(3,6]时,则an+1=an-3∈(0,3],
故an+1∈(0,6],所以当0<an≤6时,总有0<an+1≤6. …(5分)
(2)①当a=1时,a2=2,a3=4,a4=1,故满足题意的k=3t,t∈N*.
同理可得,当a=2或4时,满足题意的k=3t,t∈N*.
当a=3或6时,满足题意的k=2t,t∈N*.
②当a=5时,a2=2,a3=4,a4=1,故满足题意的k不存在.
③当a≥7时,由(1)知,满足题意的k不存在.
综上得:当a=1,2,4时,满足题意的k=3t,t∈N*;
当a=3,6时,满足题意的k=2t,t∈N*. …(12分)
(3)由m∈N*,可得2m-1≥1,故,
当1<k≤m时,
∴ak=2k-1a(k=1,2,…m)(15分)
∴Sm=a1+a2+•…+am=(1+2+…+2m-1)a=(2m-1)a=3---------(18分).