满分5 > 高中数学试题 >

在数列{an}中,a1=3,且对于任意大于1的正整数n,点(an,an-1)在直...

在数列{an}中,a1=3,且对于任意大于1的正整数n,点(an,an-1)在直线x-y-6=0上,则a3-a5+a7的值( )
A.27
B.6
C.81
D.9
根据已知中数列{an}中,a1=3,且对于任意大于1的正整数n,点(an,an-1)在直线x-y-6=0上,根据等差数列的定义我们易判断出该数列为等差数列,并求出其首项和公差,进而结合等差数列的性质,即可得到答案. 【解析】 ∵点(an,an-1)在直线x-y-6=0上, ∴an-an-1-6=0, 即an-an-1=6, ∴数列{an}是等差数列, 且首项a1=3,公差d=6, 而a3-a5+a7=a7-2d=a5=a1+4d=3+4×6=27. 故选A
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知二次函数y=f(x)的图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[t,t+2]上的最大值h(t);
(Ⅲ)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
查看答案
已知各项均为整数的等比数列{an},公比q>1,且满足a2a4=64,a3+2是a2,a4的等差中项.(1)求数列的通项公式(2)设An=an+1-2,Bn=log22an+1,试比较An与Bn的大小,并证明你的结论.
查看答案
定义:两个连续函数(图象不间断)f(x),g(x)在区间[a,b]上都有意义,我们称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]上的“绝对和”.
(1)试求函数f(x)=x2与g(x)=x(x+2)(x-4)在闭区间[-2,2]上的“绝对和”.
(2)设hm(x)=-4x+m及f(x)=x2都是定义在闭区间[1,3]上,记hm(x)与f(x)的“绝对和”为Dm,如果D(m)的最小值是D(m),则称f(x)可用manfen5.com 满分网“替代”,试求m的值,使f(x)可用manfen5.com 满分网“替代”.
查看答案
知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项an
(Ⅱ)设bn=manfen5.com 满分网+2n,求数列{bn}的前n项和Tn
查看答案

如图,在平面直角坐标系中B(4,-3),点C在第一象限内,BC交x轴于点A,∠BOC=120°,|BC|=7.
(1)求|OC|的长;
(2)记∠AOC=a,∠BOA=β.(a,β为锐角),求sina,sinβ的值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.