满分5 > 高中数学试题 >

已知:函数(其中常数a<0). (Ⅰ)求函数f(x)的定义域及单调区间; (Ⅱ)...

已知:函数manfen5.com 满分网(其中常数a<0).
(Ⅰ)求函数f(x)的定义域及单调区间;
(Ⅱ)若存在实数x∈(a,0],使得不等式manfen5.com 满分网成立,求a的取值范围.
(1)分式函数使分母不为零即{x|x≠a},先求导数fˊ(x),然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0;确定出单调区间. (2)转化成在(a,0]上的最小值小于等于,利用导数求出函数在(a,0]上的最小值,注意讨论. 【解析】 (Ⅰ)函数f(x)的定义域为{x|x≠a}.(1分) .(3分) 由f'(x)>0,解得x>a+1. 由f'(x)<0,解得x<a+1且x≠a. ∴f(x)的单调递增区间为(a+1,+∞), 单调递减区间为(-∞,a),(a,a+1);(6分) (Ⅱ)由题意可知,a<0,且在(a,0]上的最小值小于等于时, 存在实数x∈(a,0],使得不等式成立.(7分) 若a+1<0即a<-1时, ∴f(x)在(a,0]上的最小值为f(a+1)=ea+1. 则,得.(10分) 若a+1≥0即a≥-1时,f(x)在(a,0]上单调递减, 则f(x)在(a,0]上的最小值为. 由得a≤-2(舍).(12分) 综上所述,.则a的取值范围是(-∞,]
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C所对的边分别是a,b,c,manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
查看答案
已知{an}是一个等差数列,且a2=1,a5=-5.
(Ⅰ)求{an}的通项an
(Ⅱ)求{an}前n项和Sn的最大值.
查看答案
已知函数f(x)=2cos2x+asinxcosx,manfen5.com 满分网
(1)求实数a的值;
(2)求函数f(x)的最小正周期及单调增区间.
查看答案
已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),manfen5.com 满分网.则a,b,c的大小关系是     查看答案
已知函数f(x)=sin(ωx+φ)(ω>0,manfen5.com 满分网)的部分图象如图所示,则ω=    ;函数f(x)在区间manfen5.com 满分网上的最大值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.