满分5 > 高中数学试题 >

如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平...

manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.
(1)由已知中梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,我们易求出AC⊥BC,结合已知中平面ACFE⊥平面ABCD,及平面与平面垂直的性质定理,即可得到BC⊥平面ACFE. (2)以点ABC-A1B1C1为原点,△ABC所在直线为坐标轴,建立空间直角坐标系,看出AM∥平面BDF等价于与、共面,也等价于存在实数m、n,使=m+n,根据向量之间的关系得到结论. (3)要求两个平面所成的角,根据向量的加减运算做出平面的法向量,二面角B-EF-D的大小就是向量与向量所夹的角.根据向量的夹角做出结果. 证明:(1)在梯形ABCD中,∵AB∥CD, ∴四边形ABCD是等腰梯形, 且∠DCA=∠DAC=30°,∠DCB=120° ∴∠ACB=∠DCB-∠DCA=90° ∴AC⊥BC 又∵平面ACFE⊥平面ABCD,交线为AC, ∴BC⊥平面ACFE 【解析】 (2)当时,AM∥平面BDF, 以点ABC-A1B1C1为原点,△ABC所在直线为坐标轴,建立空间直角坐标系,则, AM∥平面BDF⇔与、共面,也等价于存在实数m、n,使=m+n, 设. ∵=(-a,0,0),,0,0) ∴=+=(-at,0,0) 又=(a,-a,-a),=(0,a,-a), 从而要使得:成立, 需,解得∴当时,AM∥平面BDF (3B(0,a,0),, 过D作DG⊥EF,垂足为G.令==λ(a,0,0), =+=(aλ,0,a),=-=(λa-a,a,a) 由得,, ∴ ∴,即 ∵BC⊥AC,AC∥EF, ∴BC⊥EF,BF⊥EF ∴二面角B-EF-D的大小就是向量与向量所夹的角. ∵=(0,a,-a) cos<,>=,即二面角B-EF-D的平面角的余弦值为.
复制答案
考点分析:
相关试题推荐
在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求:
(1)乙连胜四局的概率;
(2)丙连胜三局的概率.
查看答案
已知向量manfen5.com 满分网=(sinB,1-cosB)与向量manfen5.com 满分网=(2,0)的夹角为manfen5.com 满分网,其中A、B、C是△ABC的内角.
(Ⅰ)求角B的大小;
(Ⅱ)求sinA+sinC的取值范围.
查看答案
一个质点从数轴上原点出发,每次沿数轴向正方向或负方向跳动1个单位,经过10次跳动,质点与原点距离为4,则质点不同的运动方法共有    种(用数字作答). 查看答案
在算式:“4×□+1×□=30”的两个□中,分别填入两个自然数,使他们的倒数之和最小,则这两个数应分别为    查看答案
已知双曲线manfen5.com 满分网的两条渐近线的夹角为manfen5.com 满分网,则e=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.