满分5 > 高中数学试题 >

设f(x)=(a>0)为奇函数,且|f(x)|min=,数列{an}与{bn}满...

设f(x)=manfen5.com 满分网(a>0)为奇函数,且|f(x)|min=manfen5.com 满分网,数列{an}与{bn}满足如下关系:a1=2,manfen5.com 满分网manfen5.com 满分网
(1)求f(x)的解析表达式;
(2)证明:当n∈N+时,有bnmanfen5.com 满分网
(1)利用f(x)为奇函数,且|f(x)|min=,求出a,b,c即可的f(x)的解析表达式 (2)先有f(x)的解析表达式,求得an与an+1的关系,在求出bn的通项公式,来证明 【解析】 由f(x)是奇函数,得b=c=0, 由|f(x)min|=,得a=2,故f(x)= (2)=, ==bn2 ∴bn=bn-12=bn-24═,而b1= ∴bn= 当n=1时,b1=,命题成立, 当n≥2时∵2n-1=(1+1)n-1=1+Cn-11+Cn-12++Cn-1n-1≥1+Cn-11=n ∴<,即bn≤.
复制答案
考点分析:
相关试题推荐
过抛物线x2=4y上不同两点A、B分别作抛物线的切线相交于P点,manfen5.com 满分网
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数λ使得manfen5.com 满分网?若存在,求出λ的值,若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.
查看答案
在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求:
(1)乙连胜四局的概率;
(2)丙连胜三局的概率.
查看答案
已知向量manfen5.com 满分网=(sinB,1-cosB)与向量manfen5.com 满分网=(2,0)的夹角为manfen5.com 满分网,其中A、B、C是△ABC的内角.
(Ⅰ)求角B的大小;
(Ⅱ)求sinA+sinC的取值范围.
查看答案
一个质点从数轴上原点出发,每次沿数轴向正方向或负方向跳动1个单位,经过10次跳动,质点与原点距离为4,则质点不同的运动方法共有    种(用数字作答). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.