满分5 > 高中数学试题 >

已知椭圆的离心率为,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点,且manfen5.com 满分网(O为坐标原点).
(1)求椭圆C的方程;
(2)过点manfen5.com 满分网且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
(1)设出P的坐标,利用|OP|的值求得x和y的关系式,同时利用求得x和y的另一关系式,进而求得c,通过椭圆的离心率求得a,最后利用a,b和c的关系求得b,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去y,设A(x1,y1),B(x2,y2),则可利用韦达定理表示出x1+x2和x1x2,假设在y轴上存在定点M(0,m),满足题设,则可表示出,利用=0求得m的值. 【解析】 (1)设P(x,y),F1(-c,0),F2(c,0), 则由; 由得, 即. 所以c=1 又因为. 因此所求椭圆的方程为:. (2)动直线l的方程为:, 由得. 设A(x1,y1),B(x2,y2). 则. 假设在y轴上存在定点M(0,m),满足题设,则. = = = = 由假设得对于任意的恒成立, 即解得m=1. 因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点, 点M的坐标为(0,1)
复制答案
考点分析:
相关试题推荐
如图分别为三棱锥S-ABC的直观图与三视图,在直观图中,SA=SC,M、N分别为AB、SB的中点.
(1)求证:AC⊥SB;
(2)求二面角M-NC-B的余弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(其中ω为正常数,x∈R)的最小正周期为π.
(1)求ω的值;
(2)在△ABC中,若A<B,且manfen5.com 满分网,求manfen5.com 满分网
查看答案
一个盒子装有六张卡片,上面分别写着如下六个定义域为R函数:f1(x)=xmanfen5.com 满分网
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
查看答案
(在下列两题中任选一题,若两题都做,按第①题给分).
①极坐标系中,极点到直线ρcosθ+ρsinθ=2的距离等于   
②不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为    查看答案
已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法正确的是    
①2a-3b+1>0;
②a≠0时,manfen5.com 满分网有最小值,无最大值;
③∃M∈R+,使manfen5.com 满分网>M恒成立;
④当a>0且a≠1,b>0时,则manfen5.com 满分网的取值范围为(-∞,-manfen5.com 满分网)∪(manfen5.com 满分网,+∞). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.