某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm
2)如下表:
品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x
1,x
2…x
n的样本方差S
2=
[(x
1-
)]
2+…+(x
n-
)
2],其中
为样本平均数.
考点分析:
相关试题推荐
编号为A
1,A
2,…,A
16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
运动员编号 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 |
得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间 | [10,20) | [20,30) | [30,40] |
人数 | | | |
(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.
查看答案
以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(注:方差
,其中
的平均数)
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
查看答案
已知函数
.
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间
上的最大值和最小值.
查看答案
已知α,β都是锐角,sinα=
,cos(α+β)=
,则sinβ的值等于
.
查看答案
已知
=(2,3),
=(-4,7),则
在
上的投影等于
.
查看答案