考点分析:
相关试题推荐
已知数列{a
n}满足a
1=-1,
,数列{b
n}满足
(1)求证:数列
为等比数列,并求数列{a
n}的通项公式.
(2)求证:当n≥2时,
(3)设数列{b
n}的前n项和为{s
n},求证:当n≥2时,
.
查看答案
已知圆C:(x-m)
2+y
2=5(m<3)过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.
(1)求切线PF的方程;
(2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程.
(3)若Q为抛物线E上的一个动点,求
的取值范围.
查看答案
已知函数f(x)=2x-2lnx
(Ⅰ)求函数在(1,f(1))的切线方程
(Ⅱ)求函数f(x)的极值
(Ⅲ)对于曲线上的不同两点P
1(x
1,y
1),P
2(x
2,y
2),如果存在曲线上的点Q(x
,y
),且x
1<x
<x
2,使得曲线在点Q处的切线l∥P
1P
2,则称l为弦P
1P
2的陪伴切线.已知两点A(1,f(1)),B(e,f(e)),试求弦AB的陪伴切线l的方程.
查看答案
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:
(Ⅰ)连续取两次都是白球的概率;
(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0分,连续取三次分数之和为4分的概率.
查看答案
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
查看答案