满分5 > 高中数学试题 >

如图,正三棱柱ABC-A1B1C1中,D为线段A1C1中点. (Ⅰ)求证:BC1...

如图,正三棱柱ABC-A1B1C1中,D为线段A1C1中点.
(Ⅰ)求证:BC1∥平面AB1D;
(Ⅱ)若AA1=manfen5.com 满分网,二面角A-B1D-A1的大小为60,求线段 AB 的长度.

manfen5.com 满分网
(Ⅰ)连A1B交AB1于点E,由题意可得:E为AB1的中点,即可得到BC1∥DE,进而利用线面平行的判定定理得到线面平行. (Ⅱ)结合题中的条件建立空间直角坐标系,设AB=a,再写出各点的坐标,即可求出两个平面的法向量,进而利用向量之间的有关运算求出两个向量的夹角,再将其转化为二面角的平面角. 证明:(Ⅰ)连A1B交AB1于点E, ∵四边形A1ABB1为矩形, ∴E为AB1的中点….(1分) 又D为线段A1C1中点, ∴BC1∥DE…..(3分) ∵BC1⊄平面AB1D,DE⊂平面AB1D. ∴BC1∥平面AB1D…..(6分) 【解析】 (Ⅱ)以点A为原点,AB为X轴正半轴,平面ABC内过A垂直于AB的直线为Y轴,AA1为Z轴,建立空间直角坐标系,设AB=a, 则A(0,0,0),A1(0,0,),B1(a,0,),D(, ∴=, 设平面AB1D,则,, 故,, 则, 解得:, 取….(9分) ∵AA1⊥平面A1B1C1, ∴是平面A1B1C1的一个法向量, ∴, 解得a=2, ∴线段 AB 的长度为2.…(12分)
复制答案
考点分析:
相关试题推荐
中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且manfen5.com 满分网,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.求这两条曲线的方程.
查看答案
已知命题P:方程manfen5.com 满分网表示焦点在x轴上的双曲线; 命题Q:manfen5.com 满分网的夹角为锐角,如果命题“P∨Q”为真,命题“P∧Q”为假.求k的取值范围.
查看答案
若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是    查看答案
正方体ABCD-A1B1C1D1中,E是BC的中点,则平面B1D1E与平面ABCD所成的二面角的余弦值为    查看答案
如图,椭圆中心在坐标原点,F为左焦点,当manfen5.com 满分网时,其离心率为manfen5.com 满分网,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.