满分5 > 高中数学试题 >

函数f(x)=(x-3)ex的单调递增区间是( ) A.(-∞,2) B.(0,...

函数f(x)=(x-3)ex的单调递增区间是( )
A.(-∞,2)
B.(0,3)
C.(1,4)
D.(2,+∞)
若求解函数f(x)的单调递增区间,利用导数研究函数的单调性的性质,对f(x)求导,令f′(x)>0,解出x的取值区间,要考虑f(x)的定义域. 【解析】 f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,求f(x)的单调递增区间,令f′(x)>0,解得x>2,故选D.
复制答案
考点分析:
相关试题推荐
抛物线y2=-8x的焦点坐标是( )
A.(2,0)
B.(-2,0)
C.(4,0)
D.(-4,0)
查看答案
A=15,A=-A+5,最后A的值为( )
A.-10
B.25
C.15
D.无意义
查看答案
已知动点M到点Fmanfen5.com 满分网
(1)求动点M的轨迹C的方程;
(2)若过点E(0,1)的直线与曲线C在y轴左侧交于不同的两点A、B,点P(-2,0)满足manfen5.com 满分网,求直线PN在y轴上的截距d的取值范围..
查看答案
如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.

manfen5.com 满分网 查看答案
根据抛物线的光学原理:一水平光线射到抛物线上一点,经抛物线反射后,反射光线必过焦点.然后求解此题:抛物线y2=4x上有两个定点A、B分别在对称轴的上、下两侧,一水平光线射到A点后,反射光线会平行y轴,一水平光线射到B点后,反射光线所在直线的斜率为 manfen5.com 满分网
(Ⅰ)求直线AB的方程.
(Ⅱ)在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求这个最大面积.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.