满分5 > 高中数学试题 >

已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上一点...

已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P.
(I)求动点P的轨迹方程;
(II)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,且满足manfen5.com 满分网(O为原点).若存在,求直线l的方程;若不存在,请说明理由.

manfen5.com 满分网
(I)由题意得|PA|=|PB|且|PB|+|PF|=r=8.故|PA|+|PF|=8>|AF|=4∴P点轨迹为以A、F为焦点的椭圆,从而动点P的轨迹方程; (II)假设存在满足题意的直线L,设直线L的斜率为k,R(x1,y1),T(x2,y2).∵,∴.从而求得直线方程. 【解析】 (I)由题意得|PA|=|PB|且|PB|+|PF|=r=8.故|PA|+|PF|=8>|AF|=4 ∴P点轨迹为以A、F为焦点的椭圆. 设椭圆方程为 ∴. (II)假设存在满足题意的直线L.易知当直线的斜率不存在时,不满足题意. 故设直线L的斜率为k,R(x1,y1),T(x2,y2). ∵,∴. ..…①. ∴. ∴y1•y2=(kx1-4)(kx2-4)=k2x1x2-4k(x1+x2)+16, .解得k2=1.…②. 由①、②解得k=±1. ∴直线l的方程为y=±x-4. 故存在直线l:,x+y+4=0或x-y-4=0,满足题意.
复制答案
考点分析:
相关试题推荐
设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
查看答案
等比数列{an}中,已知a1=2,a4=16
(I)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
某中学共有学生2000人,各年级男,女生人数如下表:
一年级二年级三年级
女生373xy
男生377370z
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(2)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
查看答案
在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=manfen5.com 满分网,sinB=manfen5.com 满分网
(1)求A+B的值;
(2)若a-b=manfen5.com 满分网-1,求a、b、c的值.
查看答案
已知命题p:∃x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.