满分5 > 高中数学试题 >

已知直线l的参数方程为(t为参数,α为倾斜角,且α)与曲线C:交于A、B两点. ...

已知直线l的参数方程为manfen5.com 满分网(t为参数,α为倾斜角,且αmanfen5.com 满分网)与曲线C:manfen5.com 满分网交于A、B两点.
(1)写出直线l的一般方程及直线l通过的定点P的坐标;
(2)求|PA|•|PB|的值.
(1)由已知中直线l的参数方程为(t为参数,α为倾斜角,且α),消参后,即可得到函数的普通方程,y=tanα(x-2),易得这是一个恒过(2,0)的直线,化为一般式后,即可得到答案. (2)由已知中曲线C的极坐标方程:,我们易得到曲线C表示一个以原点为圆心,以4为半径的圆,再由相交弦定理,即可得到答案. 【解析】 (1)∵直线l的参数方程为(t为参数,α为倾斜角,且α) 化为普通方程得:y=tanα(x-2)…① 则直线l的一般方程为tanαx-y-2tanα=0 由①式易得直线l通过的定点P(2,0) (2)∵直线l的参数方程为 又由曲线C:可得 曲线C的标准方程为:x2+y2=16 由相交弦定理,可得|PA|•|PB|=6×2=12
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,⊙O是以AB为直径的△ABC的外接圆,点D是劣弧manfen5.com 满分网的中点,连接AD并延长,与过C点的切线交于P,OD与BC相交于点E.
(Ⅰ)求证:OE=manfen5.com 满分网AC;
(Ⅱ)求证:manfen5.com 满分网=manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)当a<0时,若∃x>0,使f(x)≤0成立,求a的取值范围;
(Ⅱ)令g(x)=f(x)-(a+1)x,a∈(1,e],证明:对∀x1,x2∈[1,a],恒有|g(x1)-g(x2)|<1.
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网
(Ⅰ)过椭圆C的右焦点F且垂直于长轴的直线被椭圆截得的弦 长为1,求椭圆C的方程;
(Ⅱ)设经过椭圆C右焦点F的直线l交椭圆C于A,B两点,交y轴于点P,且manfen5.com 满分网,求λ12的值.
查看答案
如图,在三棱锥P-ABC中,PA⊥AC,PA⊥AB,PA=AB,manfen5.com 满分网manfen5.com 满分网,点D,E分别在棱PB,PC上,且DE∥BC,
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值.

manfen5.com 满分网 查看答案
甲、乙、丙三个盒子,甲盒中有5个白球,乙盒中有4个白球1个黑球,丙盒中有3个白球2个黑球,从每个盒中取2个球(取到每球的可能性相等).
求:(1)只取到一个黑球的概率;
(2)取到两个黑球的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.