满分5 >
高中数学试题 >
已知集合M={3,log2x4},N={x,y},且M∩N={2},函数f:M→...
已知集合M={3,log2x4},N={x,y},且M∩N={2},函数f:M→N满足:对任意的x∈M,都有x+f(x)为奇数,满足条件的函数的个数为( )
A.0
B.1
C.2
D.4
考点分析:
相关试题推荐
已知△ABC是钝角三角形,且角C为钝角,则点P(sinA+sinB-sinC,sinA-cosB)落在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值.
查看答案
如图,在长方体ABCD-A
1B
1C
1D
1中,AD=AA
1=1,AB=2,点E在棱AB上移动.
(1)证明:D
1E⊥A
1D;
(2)当E为AB的中点时,求点E到面ACD
1的距离;
(3)AE等于何值时,二面角D
1-EC-D的大小为
.
查看答案
已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1
(1)求椭圆C的方程;
(2)若P为椭圆C的动点,M为过P且垂直于x轴的直线上的点,
,e为椭圆C的离心率,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=AD=2.
(1)求PC与平面PBD所成的角;
(2)在线段PB上是否存在一点E,使得PC⊥平面ADE?并说明理由.
查看答案