满分5 > 高中数学试题 >

若数列{an}的前n项和为Sn=n2,则( ) A.an=2n-1 B.an=2...

若数列{an}的前n项和为Sn=n2,则( )
A.an=2n-1
B.an=2n+1
C.an=-2n-1
D.an=-2n+1
根据数列{an}的前n项和Sn,表示出数列{an}的前n-1项和Sn-1,两式相减即可求出此数列的通项公式,然后把n=1代入也满足,故此数列为等差数列,求出的an即为通项公式, 【解析】 当n=1时,S1=12=1, 当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1, 又n=1时,a1=2-1=1,满足通项公式, ∴此数列为等差数列,其通项公式为an=2n-1, 故选A.
复制答案
考点分析:
相关试题推荐
设集合A={x||x|>3},B={x|manfen5.com 满分网<0},则A∩B=( )
A.φ
B.(3,4)
C.(-2,1)
D.(4,+∞)
查看答案
已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x.
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值,若不存在,请说明理由;
(3)求证:manfen5.com 满分网
查看答案
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若manfen5.com 满分网,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
查看答案
设数列{an}的前n项积为Tn,Tn=1-an;数列{bn}的前n项和为Sn,Sn=1-bn
(1)设manfen5.com 满分网.证明数列{cn}成等差数列;求数列{an}的通项公式;
(2)若Tn(nbn+n-2)≤kn对n∈N+恒成立,求实数k的取值范围.
查看答案
已知三棱柱ABC-A1B1C1,侧面AA1C1C⊥侧面ABB1A1,AA1=A1C=CA=2,manfen5.com 满分网
(1)求证:AA1⊥BC;
(2)求二面角A-BC-A1的余弦值;
(3)若manfen5.com 满分网,在线段CA1上是否存在一点E,使得DE∥平
面ABC?若存在,求出CE的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.