满分5 > 高中数学试题 >

等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数...

等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
(1)由“对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上”可得到Sn=bn+r,依次求出a1、a2、a3,由等比数列的性质(a2)2=a1×a3,解可得答案. (2)结合(1)可知an=(b-1)bn-1=2n-1,从而bn=,符合一个等差数列与等比数列相应项之积的形式,用错位相减法求解即可. 【解析】 因为对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上. 所以得Sn=bn+r, 当n=1时,a1=S1=b+r, a2=S2-S1=b2+r-(b1+r)=b2-b1=(b-1)b, a3=S3-S2=b3+r-(b2+r)=b3-b2=(b-1)b2, 又因为{an}为等比数列,所以(a2)2=a1×a3, 解可得r=-1, (2)当b=2时,an=(b-1)bn-1=2n-1,bn= 则Tn= Tn= 相减,得Tn= += 所以Tn=
复制答案
考点分析:
相关试题推荐
已知集合A={(x,y)|-2≤x≤2,-2≤y≤2},集合B={(x,y)|(x-2)2+(y-1)2≤4}.
(1)在集合A中任取一个元素P,求P∈B的概率;
(2)若集合A,B中元素(x,y)的x,y∈Z,则在集合A中任取一个元素P,求P∈B的概率.
查看答案
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在实数m,使得方程f(x)-2mx=0在区间(m,m+6)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
查看答案
设向量manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网垂直,求tan(α+β)的值;
(2)求manfen5.com 满分网的最大值;
(3)若tanαtanβ=16,求证:manfen5.com 满分网manfen5.com 满分网
查看答案
manfen5.com 满分网,则函数y=tan2xtan3x的最大值为    查看答案
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=manfen5.com 满分网,三内角A,B,C成等差数列,则sinA=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.