满分5 > 高中数学试题 >

已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn...

已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
A.21
B.20
C.19
D.18
写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件. 【解析】 设{an}的公差为d,由题意得 a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,① a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,② 由①②联立得a1=39,d=-2, ∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400, 故当n=20时,Sn达到最大值400. 故选B.
复制答案
考点分析:
相关试题推荐
从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是( )
A.5,15,25,35,45
B.1,2,3,4,5
C.2,4,6,8,10
D.4,13,22,31,40
查看答案
在△ABC中,若b=6,c=10,B=30°,则解此三角形的结果为( )
A.无解
B.有一解
C.有两解
D.一解或两解
查看答案
若a,b,c∈R,且a>b,则下列不等式一定成立的是( )
A.a+c≥b-c
B.ac>bc
C.manfen5.com 满分网>0
D.(a-b)c2≥0
查看答案
设椭圆manfen5.com 满分网的左,右焦点为F1,F2,(1,manfen5.com 满分网)为椭圆上一点,椭圆的长半轴长等于焦距,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自F1引直线交曲线C于P,Q两个不同的交点,点P关于x轴的对称点记为M,设manfen5.com 满分网
(1)求椭圆方程和抛物线方程;
(2)证明:manfen5.com 满分网
(3)若λ∈[2,3],求|PQ|的取值范围.
查看答案
已知一四棱锥P-ABCD的三视图,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)若E点分PC为PE:EC=2:1,求点P到平面BDE的距离;
(3)若E点为PC的中点,求二面角D-AE-B的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.