满分5 > 高中数学试题 >

设函数. (1)求f(x)的最小正周期与单调递减区间; (2)在△ABC中,a、...

设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为manfen5.com 满分网的值.
(1)利用向量的数量积通过二倍角公式,两角和的正弦函数化简函数的表达式,然后求f(x)的最小正周期,借助正弦函数的单调减区间求出函数的单调递减区间; (2)通过f(A)=2,利用三角形的内角,求出A的值,利用△ABC的面积为. 【解析】 (1). ∴.---------------(2分) 令.∴.--------------(4分) (2)由,,∵0<A<π, ∴.∴.-(6分), ∴在△ABC中,由余弦定理得:a2=b2+c2-2bccosA=3,∴.---------8 由,∴.--(10分)
复制答案
考点分析:
相关试题推荐
假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x]23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.
(1)请根据最小二乘法求出线性回归方程y=bx+a的回归系数a,b;
(2)估计使用年限为10年时,维修费用是多少?
查看答案
已知函数f(x)=x2-2(a+1)x+a2+1,x∈R.
(1)若a=2,解不等式f(x)<0;
(2)若a∈R,解关于x的不等式f(x)<0;
(3)若x∈[0,2]时,f(x)≥a2(1-x)恒成立.求实数a的取值范围.
查看答案
manfen5.com 满分网如图是总体的一个样本频率分布直方图,且在[15,18)内频数为8.求:
(1)求样本容量;
(2)若在[12,15)内的小矩形面积为0.06,求在[12,15)内的频数;
(3)求样本在[18,33)内的频率.
查看答案
已知等比数列{an},a2=8,a5=512.
(I)求{an}的通项公式;
(II)令bn=log2an,求数列bn的前n项和Sn
查看答案
已知f(x)是定义在R上的不恒等于零的函数,且对于任意的a,b∈R,满足f(ab)=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网,bn=manfen5.com 满分网,n∈N*,下列结论:
①f(0)=f(1);②f(x)为偶函数;③f(x)为奇函数;④数列{an}为等比数列; ⑤数列{bn}为等差数列. 正确的序号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.