满分5 > 高中数学试题 >

已知函数,其中x∈R,θ为参数,且0≤θ≤. (Ⅰ)当cosθ=0时,判断函数f...

已知函数manfen5.com 满分网,其中x∈R,θ为参数,且0≤θ≤manfen5.com 满分网
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(II)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.
(1)先求函数的导数,f′(x)>0在(-∞,+∞)上恒成立,得到函数的单调性,从而可判定是否有极值. (2)先求出极值点,f′(x)=0的点附近的导数的符号的变化情况,来确定极值,求出极小值,使函数f(x)的极小值大于零建立不等关系,求出参数θ的取值范围即可. (3)由(II)知,函数f(x)在区间(-∞,0)与内都是增函数,只需(2a-1,a)是区间(-∞,0)与的子集即可. 【解析】 (I)【解析】 当cosθ=0时,则f(x)在(-∞,+∞)内是增函数, 故无极值. (II)【解析】 f'(x)=12x2-6xcosθ,令f'(x)=0, 得. 由及(I),只需考虑cosθ>0的情况. 当x变化时,f'(x)的符号及f(x)的变化情况如下表:  x  (-∞,0)  0 (0,)    ()   f'(x) +  0  -  0 +  f(x)  递增  极大值  递减  极小值  递增 因此,函数f(x)在处取得极小值,且. 要使,必有, 可得,所以 (III)【解析】 由(II)知,函数f(x)在区间(-∞,0)与内都是增函数. 由题设,函数f(x)在(2a-1,a)内是增函数, 则a须满足不等式组或 由(II),参数时,.要使不等式关于参数θ恒成立,必有. 综上,解得a≤0或. 所以a的取值范围是.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4 和圆C2:(x-4)2+(y-5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2manfen5.com 满分网,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
查看答案
由点P(0,1)引圆x2+y2=4的割线l,交圆于A,B两点,使△AOB的面积为manfen5.com 满分网(O为原点),求直线l的方程.
查看答案
矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
(I)求AD边所在直线的方程;(II)求矩形ABCD外接圆的方程.
查看答案
已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:
(A)对任意实数k与q,直线l和圆M相切;
(B)对任意实数k与q,直线l和圆M有公共点;
(C)对任意实数q,必存在实数k,使得直线l与和圆M相切
(D)对任意实数k,必存在实数q,使得直线l与和圆M相切
其中真命题的代号是    .(写出所有真命题的代号) 查看答案
已知点P(x,y)的坐标满足条件manfen5.com 满分网,点O为坐标原点,那么|PO|的最小值等于    ,最大值
等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.