满分5 > 高中数学试题 >

设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且. ...

设椭圆manfen5.com 满分网的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值.

manfen5.com 满分网
(Ⅰ)由焦点坐标可求得c,进而根据求得a,进而求得b,则椭圆方程可得. (Ⅱ)先看当直线DE和直线MN与x轴垂直时,可求得四边形DMEN的面积;进而看直线DE,MN均与x轴不垂直时,设DE的直线方程与椭圆方程联立消去y,设D(x1,y1),E(x2,y2),进而利用韦达定理可得x1x2和x1+x2,进而可表示出|DE|,同理可表示出|MN|进而可表示出四边形的面积,进而根据均值不等式求得四边形的面积的范围,则最大值和最小值可得. 【解析】 (Ⅰ)由题意,,∴A(a2,0), ∵∴F2为AF1的中点 ∴a2=3,b2=2 即椭圆方程为. (Ⅱ)当直线DE与x轴垂直时,|DE|=, 此时,四边形DMEN的面积为. 同理当MN与x轴垂直时,也有四边形DMEN的面积为. 当直线DE,MN均与x轴不垂直时,设DE:y=k(x+1),代入椭圆方程,消去y得:(2+3k2)x2+6k2x+(3k2-6)=0. 设D(x1,y1),E(x2,y2),则 所以,, 所以,, 同理,|MN|=. 所以,四边形的面积S===, 令,得 因为, 当k=±1时,,且S是以u为自变量的增函数, 所以. 综上可知,.即四边形DMEN面积的最大值为4,最小值为.
复制答案
考点分析:
相关试题推荐
已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R
(Ⅰ)当a=1时,求f(x)在(2,f(2))处的切线方程;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.
查看答案
某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本人教A版人教B版
性别男教师女教师男教师女教师
人数6342
(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为ξ,求随机变量ξ的分布列和数学期望Eξ.
查看答案
已知△ABC中,2sinAcosB=sinCcosB+cosCsinB.
(Ⅰ)求角B的大小;
(Ⅱ)设向量manfen5.com 满分网=(cosA,cos2A),manfen5.com 满分网,求当manfen5.com 满分网取最小值时,manfen5.com 满分网值.
查看答案
我们可以利用数列{an}的递推公式an=manfen5.com 满分网(n∈N+)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a24+a25=    ;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第    项. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.