满分5 > 高中数学试题 >

已知数列a1,a2,…a30,其中a1,a2,…a10是首项为1,公差为1的等差...

已知数列a1,a2,…a30,其中a1,a2,…a10是首项为1,公差为1的等差数列;a10,a11,…a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).
(1)若a20=40,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围;
(3)续写已知数列,使得a30,a31,…a40是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.试写出a10(n+1)关于d的关系式,并求当公差d>0时a10(n+1)的取值范围.
(1)由a10=10及a20=10+10d=40可求公差 d (2)由已知可得a30=a20+10d2=10(1+d+d2)(d≠0)=,根据二次函数的性质可求 (3)所给数列可推广为无穷数列{an},其中a1,a2…a10是首项为1,公差为1的等差数列,当n≥1时,数列a10n,a10n+1,…a10(n+1)是公差为dn的等差数列,从而由a40=a30+10d3=10(1+d2+d3), 依此类推可得a10(n+1)=10(1+d+…+dn)=进而可求d>0时,a10(n+1)的取值范围 【解析】 (1)∵a10=10,a20=10+10d=40 ∴d=3.(2分) (2)a30=a20+10d2=10(1+d+d2)(d≠0),(4分) =,(6分) 当d∈(-∞,0)∪(0,+∞)时,a30∈[7.5,+∞).(8分) (3)所给数列可推广为无穷数列{an},其中a1,a2…a10是首项为1, 公差为1的等差数列,当n≥1时,数列a10n,a10n+1,…a10(n+1)是公差为dn的等差数列.(10分) 由a40=a30+10d3=10(1+d+d2+d3), 依此类推可得a10(n+1)=10(1+d+…+dn)=(12分) 当d>0时,a10(n+1)的取值范围为(10,+∞).(13分)
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值.

manfen5.com 满分网 查看答案
已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R
(Ⅰ)当a=1时,求f(x)在(2,f(2))处的切线方程;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.
查看答案
某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
版本人教A版人教B版
性别男教师女教师男教师女教师
人数6342
(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为ξ,求随机变量ξ的分布列和数学期望Eξ.
查看答案
已知△ABC中,2sinAcosB=sinCcosB+cosCsinB.
(Ⅰ)求角B的大小;
(Ⅱ)设向量manfen5.com 满分网=(cosA,cos2A),manfen5.com 满分网,求当manfen5.com 满分网取最小值时,manfen5.com 满分网值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.