(1)首先利用正弦定理化边为角,可得2RsinBcosC=3×2RsinAcosB-2RsinCcosB,然后利用两角和与差的正弦公式及诱导公式化简求值即可.
(2)由向量数量积的定义可得accosB=2,结合已知及余弦定理可得a2+b2=12,再根据完全平方式易得a=c=.
【解析】
(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,
则2RsinBcosC=6RsinAcosB-2RsinCcosB,
故sinBcosC=3sinAcosB-sinCcosB,
可得sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
可得sinA=3sinAcosB.又sinA≠0,
因此.(6分)
(II)【解析】
由,可得accosB=2,
,
由b2=a2+c2-2accosB,
可得a2+c2=12,
所以(a-c)2=0,即a=c,
所以.(13分)